|
2#
楼主 |
发表于 2010-2-7 17:57:44
|
只看该作者
第一,原初气体中不含有尘埃颗粒。其结果是,作用在气体上的辐射力要弱得多。第二,通常假设在原初气体中磁场的作用并不重要。因为除非牵涉到特殊的机制,否则早期宇宙所产生的磁场强度非常小,以致于无法在原初恒星形成的气体中起到大的作用。在现代的恒星形成中,磁场至少具有两个重要的作用:它们可以降低形成恒星气体的角动量,同时它们还会驱动会驱散大量母气体云物质的强劲外流。在原初情况下,星前气体可能具有较高的角动量,宇宙数值模拟证实了这一点。第三,在具有相同质量的情况下,原初恒星要比现代恒星的温度高得多,由此会产生更大的电离光度。
对第一代恒星(星族Ⅲ.1)形成的精湛数值模拟代表了计算上的杰作,其中的坍缩过程可以从宇宙学尺度(共动坐标下百万秒差距,1秒差距=3.26光年)一直进行到原恒星尺度(亚天文单位),揭示出了原恒星形成的整个过程。然而,在缺乏对辐射物理机制描述的情况下,这些模拟无法精确地展示原恒星进一步生长的过程。现在,原恒星随后的演化都由近似的分析计算给出。通过对现代大质量恒星形成理论的推广,由此可以近似地给出数值模拟中所需要的初始条件,并且预言恒星周围吸积盘的生长。一些反馈效应决定了第一代恒星的最终质量。吸积气体中氢分子的光致离解作用会降低它冷却的速率,但是并不会终止吸积的过程。当原恒星长到20-30个太阳质量的时候,莱曼-α辐射压会在恒星的两极逆转气体下落的过程,但即使如此也不会显著地减小吸积率。当原恒星达到50-100个太阳质量的时候,由大量电离辐射所产生的氢Ⅱ区(电离氢区)的扩张才会大幅度地减小吸积率,但是吸积过程在恒星的赤道平面内仍能继续。最终,在吸积盘中由光致蒸发驱动的质量损失会终止吸积过程,并且确定下恒星的质量。这一最终质量取决于熵以及星前气体的角动量。在合理的情况下,这一质量会在60-300个太阳质量之间。
许多物理过程会影响甚至彻底改变上面所描述的这一物理图像。虽然强度仍然不确定,但是由磁转动不稳定性所产生的磁场也许在原恒星盘中会变得重要,在吸积过程中可能也扮演了重要的角色。宇宙线和其他的外部电离源,如果它们在早期宇宙中存在的话,也会强烈地影响原初气体的演化。由于有大量的电子可以促进氢分子的形成,部分电离的气体可以更为有效地冷却。这些气体可以冷却到比中性气体所能达到的更低一些的温度,此时由氘化氢分子造成的冷却效应会开始变得重要。
如果暗物质的特性和上面假设的不同,那么对于标准模型而言还会有更多重要的改变。在标准模型中,一个关键的假设是暗物质仅通过引力和重子物质发生相互作用。但是,暗物质可以间接地影响星前气体的动力学。冷暗物质的一大候选者是渺中子,它的自湮灭截面非常大。因此在密度非常高的区域,渺中子暗物质预期会发生对湮灭现象,释放出π介子、电子-正电子对以及高能光子。当密度足够高的时候,这些湮灭产物可能会有效地加热坍缩中的原初气体云,由此阻止坍缩的进行。在有暗物质湮灭的情况下对恒星结构的计算显示,它们会经历一个温度在4,000-10,000开的演化阶段,这个温度要比通常的星族Ⅲ恒星低很多。这一效应的强弱非常敏感地依赖于暗物质的聚集程度以及渺中子湮灭的最终产物。此外,在目前的计算中都做了球对称假设,但是重子物质和暗物质的角动量也许会显著地遏制暗物质的高密度积聚,由此它们也会无法有效地湮灭。虽然如此,如果渺中子被探测到具有一个“合适”的质量范围,那么早期恒星的形成模型可能就需要涵盖暗物质湮灭的效应。 |
|